New journal publication – SPADE

Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019

J.M. Thériault, S.J. Déry, J.W. Pomeroy, H.M. Smith, J. Almonte, A. Bertoncini, R.W. Crawford, A. Desroches-Lapointe, M. Lachapelle, Z. Mariani, S. Mitchell, J.E. Morris, C. Hébert-Pinard, P. Rodriguez, and H.D. Thompson

Earth System Science Data, Volume 13, Issue 3
March 24, 2021
https://doi.org/10.5194/essd-13-1233-2021

Abstract:
The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.

Read more here.

New journal publication: human-water systems

Conceptualizing Cascading Effects of Resilience in Human–Water Systems

Li Xu, Feng Mao, James S. Famiglietti, John W. Pomeroy, Claudia Pahl-Wostl

Multisystemic Resilience: Adaptation and Transformation in Contexts of Change
March, 2021
DOI: 10.1093/oso/9780190095888.001.0001

Abstract:
People and water interact over time and across space as coupled systems. Investigating the resilience of such coupling should take a multisystemic approach to address not only the resilience in different human and water systems, but also the interrelationship between their resilience processes. Based on the three framings of resilience in the coupled human–water context (i.e., social resilience, hydrological resilience, and socio-hydrological resilience), a conceptual framework is proposed for understanding the cascading effects of resilience along a chain of resilience change across systems and scales. The authors use a case example from a drainage basin in the Canadian Prairies to exemplify this framework and demonstrate how a change in the resilience of one system can exert an impact on the resilience of another, in socio-hydrological systems that are under the influence of both human activities and climate change.

Read the full article here.