New Article on the Climate Crisis from Robert Sandford

Climate Crisis: Elephants in the Room are Getting Nastier

Robert Sandford
Inter Press Service News Agency
May18, 2021

The year 2020 will forever be notorious for the COVID-19 pandemic but it might also be known by historians for a precipitous rise in second order climate change consequences — a new elephant in the room.

Familiar first order consequences, as documented in the World Meteorological Organization’s most recent State of the Global Climate report in April (at https://bit.ly/3eyrPwU), were the ongoing temperature rise over land and sea, melting sea ice and glaciers, higher sea levels, and changes in precipitation patterns.

Also in 2020, continuing a decade-long trend: widespread drought, heat waves, wildfires, cyclones, and flooding, especially in Africa and Asia but also in South America and the United States.

All these led to the second order consequences: Greater food insecurity and an accelerated explosion in involuntary human migration and displacement worldwide.

 

Read the article here: Climate Crisis: Elephants in the Room are Getting Nastier | Inter Press Service (ipsnews.net)

New Journal Article – hydrological and landscape change data

The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window

Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy

Hydrology and Earth System Sciences, Volume 25, Issue 5
May18, 2021
DOI: https://doi.org/10.5194/hess-25-2513-2021

Abstract
East of the Continental Divide in the cold interior of Western Canada, the Mackenzie and Nelson River basins have some of the world’s most extreme and variable climates, and the warming climate is changing the landscape, vegetation, cryosphere, and hydrology. Available data consist of streamflow records from a large number (395) of natural (unmanaged) gauged basins, where flow may be perennial or temporary, collected either year-round or during only the warm season, for a different series of years between 1910 and 2012. An annual warm-season time window where observations were available across all stations was used to classify (1) streamflow regime and (2) seasonal trend patterns. Streamflow trends were compared to changes in satellite Normalized Difference Indices.

Clustering using dynamic time warping, which overcomes differences in streamflow timing due to latitude or elevation, identified 12 regime types. Streamflow regime types exhibit a strong connection to location; there is a strong distinction between mountains and plains and associated with ecozones. Clustering of seasonal trends resulted in six trend patterns that also follow a distinct spatial organization. The trend patterns include one with decreasing streamflow, four with different patterns of increasing streamflow, and one without structure. The spatial patterns of trends in mean, minimum, and maximum of Normalized Difference Indices of water and snow (NDWI and NDSI) were similar to each other but different from Normalized Difference Index of vegetation (NDVI) trends. Regime types, trend patterns, and satellite indices trends each showed spatially coherent patterns separating the Canadian Rockies and other mountain ranges in the west from the poorly defined drainage basins in the east and north. Three specific areas of change were identified: (i) in the mountains and cold taiga-covered subarctic, streamflow and greenness were increasing while wetness and snowcover were decreasing, (ii) in the forested Boreal Plains, particularly in the mountainous west, streamflows and greenness were decreasing but wetness and snowcover were not changing, and (iii) in the semi-arid to sub-humid agricultural Prairies, three patterns of increasing streamflow and an increase in the wetness index were observed. The largest changes in streamflow occurred in the eastern Canadian Prairies.

Read the full publication here.